GERE

Elektronik und
Feinwerktechnik GmbH

Module und Gerate zum Eingeben,
Auswerten, Anzeigen und Ausdrucken
analoger und digitaler Daten.

GeBE’s Windows CE Printer Driver

“GeBE Tiny Driver”
a driver for use on Windows CE 4, WinCE5, WinCE6

User Handbook

The GeBE logo is a registered trademark of GeBE Elektronik und Feinwerktechnik GmbH. All other brands named in
this brochure are properties of the respective companies. Errors and changes reserved. The technical data given are
non-committal information and do not represent any assurance of certain features. Our terms of payment and delivery
apply. Copyright © 2009 GeBE Elektronik und Feinwerktechnik GmbH. All rights reserved.

GeBE Elektronik und Feinwerktechnik GmbH

Beethovenstr. 15 / D-82110 Germering / Germany / www.gebe.net
Phone:++49 (0) 89/894141-0 / Fax:++49 (0) 89/8402168 / E-Mail: sales.ef@gebe.net

Contents

. Introduction

1.1. Naming Scheme
1.2. Required Registry Keys
1.3. Printer Driver and Port Monitor,

. Installation

2.1. Manual Installation (.dIl) Lo
2.2. Installation through an Automated Installer (.cab)
2.2.1. Application Manager
222, KnownlIssues
2.3. Upgrading o o
2.4, Removing o L

. The Driver

3.1. Basic Overview o e e
3.2. Registry Entrieso
3.2.1. Required Registry Settings
3.2.2. Settings used to configure the Driver
3.2.3. Other, Related Keys
3.3. The Driver’s Application Programming Interface (API)
3.3.1. Request Printer Reset oo
3.3.2. Request Printer Status L oo
3.3.3. Obtain Latest Status Messages
3.3.4. Stopping the Driver from monitoring the Port
3.4. External Syncronization e
3.5. Waking up Printers in Sleep Mode L oo oo
3.6. GeBE Driver Demo Program
3.6.1. Source Code
3.6.2. Imterface L

. Miscellaneous

4.1. Frequently Asked Questions, with Answers
4.1.1. What is the window that is shown with the first print using the driver?
4.1.2. Sometimes my printouts begin with characters not in the document to be

printed. How does one get rid of this garbage?
4.1.3. How can a document be printed that is wider than it is long, without the
printout being rotated into landscape mode?

List of Figures
List of Tables

A. Code - GetPrinterStatus

ot ot ot

00 =1 =1 ~1 ~1 ~1 ~

22

23
24

27

1. Introduction

CE_ TinyDriver is the GeBE printer driver for GeBE’s A8 (Atmel) and GeBE’s NEC printers in
conjunction with Microsoft Windows CE.

1.1. Naming Scheme

Initially built for use on Windows CE 5.0 devices, binaries are also available for use on Windows
CE .NET (4.2). The drivers are named using the following convention:

Version of WinCE _ Name of the Driver _ Architecture .dl1l

Table 1.1 illustrates some examples of the naming scheme for the driver. Please note, the names of
the files can be changed to anything that Windows CE supports. Changing the driver’s filename
is encouraged.

Table 1.1.: Naming Schemes

filename type OS CPU
CE50_TinyDriver ArmlI.dll driver WinCE 5.0 ARM
CE42 TinyDriver ArmlI.dll driver WinCE .NET 4.2 ARM
Flash_arml_1.31.cab installer ARM

1.2. Required Registry Keys

Most of the registry settings in HKLM\Drivers\BuiltIn\GEP are needed for the driver to func-
tion. The registry entry HKLM\Drivers\BuiltIn\GEP\DLL, of type string, with default value
"CE5 _TinyDriver ArmlI.dll", should be updated to point to the location of the driver should the
file be installed somewhere outside of the PATH. Section 3.2 on page 10 discusses the registry keys
and values.

1.3. Printer Driver and Port Monitor

GeBE’s CE_TinyDriver performs the work of both a port monitor and a printer driver. When
the programmer calls StartDoc, the driver could ask the printer for its status. This approach may
work and perhaps even work well so long as the status can be quickly obtained from the printer.
Although it may work, this approach has its issues. The program and Windows CE wait for the
driver before continuing. Meanwhile, the driver is waiting for the printer to respond. Worse than
not responding quickly is when the printer does not reply at all (printer has been disconnected
from the port or has been turned off). Under this approach, the entire system would seem to
hang, waiting indefinitely for an answer that has not come.

The current driver, CE_ TinyDriver, does not ask the printer directly for its status upon handling
the context commands (StartDoc, StartPage, and so on). Rather, the driver queries the driver’s
internal port monitor to obtain the last status events from the print. These events are timestamped
and provide the data needed by the developer of the driver to know that status of the printer.

The status can be obtained more quickly and a status can be guaranteed, even if the printer has
gone off-line.

The current driver needs to be started in Windows CE by the program device.exe as a built-in
device. This is necessary for the driver to monitor the port. This allows the driver to continually
monitor the port for incoming status events from the printer.

The size of the driver is around 34KB for WinCE 5 and around 56KB for WinCE .NET 4.2.
The previous version (without the port monitor-like functionality) was around 17KB for WinCE
NET 4.2.

2. Installation

The driver consists of a file containing the driver itself and a set of registry settings required by
the driver. Installation can be performed manually or through an automated installer.

2.1. Manual Installation (.dll)

Manual installation requires that the driver .dll file is copied to a desired location on the Windows
CE machine (such as in \Windows) and that the registry settings required by the driver are
created and configured (using, for example, the Windows CE Remote Registry Editor program).
The registry settings are discussed in Section 3.2.

2.2. Installation through an Automated Installer (.cab)

The driver may be distributed as part of an installer. The installer creates the registry entries as
well as copies the driver to the installation location. Also, data is added by the installer so that
the driver can be removed through Remove Programs in the Control Panel. For this, the installer
needs to be opened from within Windows CE. The file could be copied to the device, usually via
ActiveSync.

2.2.1. Application Manager

Other than the DLL file itself, using the installer adds at least two other files to the installa-
tion. The names of the files depend on the settings in the installer but usually the Application
Manager is instructed by the installer to use file names following “CompanyName AppName” for-
mat. (For example, the files GeBE _TinyDriver 1.28.DAT (found in the AppMgr sub directory
of the \Windows directory) and GeBE_TinyDriver 1.28.unload (found in the \Windows direc-
tory) were created by the Application Manager while using the Installer Wizard during a standard
installation.)

2.2.2. Known lIssues

During installation using the installer, the user is asked for the location into which the driver
should be installed. The default directory is \Windows. The user, however, may select any other
folder on the system. A known issue of the installer is that the corresponding registry entries are
not updated to reflect the driver being outside of the path.

In the case that the driver is located outside of the PATH (ie \Windows), the registry keys DLL
and Driver need to be edited to point to the driver with full path (ie \FFDISK \GeBE \Drivers
\CE5_Tiny_ArmlI.dll).

2.3. Upgrading

Upgrading refers to installing a newer version of the driver than the one currently on the system.
In both cases (using the .cab installer or copying the .dll manually), it would be best to remove the
previous driver. The installer itself is simple and does not handle complex cases well. Removing
the previous driver assures that the file is not in use by Windows CE and therefore cannot be
removed.

Remove Programs m
Remaove Programs

To rermove a progran, select it and
then press Remnave,

rgBE Tirty PrIer 2,50

Microsoft \MET CF 2.0 EMU-String Resol

Remove.

:j)| & Remove ... |,*,»_.;,> 15:11 |@ |%

Figure 2.1.: the driver’s entry in Remove Programs

2.4. Removing

The uninstaller can be used to remove what can be removed of the driver. This typically just
removes the entry from the “Remove Programs” control panel as the uninstaller has difficulty
removing files in use. One tactic is to rename the driver file then reboot so that it is not loaded
upon restart and can be deleted or overwritten. The issue is that the .dll file is being used by
WinCE when WinCE starts (if the needed registry keys and the file are where they need to be)
even if your program has not been opened nor called the driver.

Uninstalling the driver through the “Remove Programs” control panel may result in an error
claiming certain files cannot be removed - because they do not exist or because they are in use.
Resetting the machine via a Cold Reset, depending on the Windows CE configuration, may remove
the driver from \Windows by restoring the system directory to its default state.

3.

The Driver

3.1. Basic Overview

The GeBE TinyDriver, the printer driver for use on Windows CE .NET and Windows CE 5.0 in
conjunction with a printer from GeBE’s A8 series of printers. Other than the normal commands
for interacting with the driver (AbortDC, CreateDC, StartDoc, StartPage, EndPage, EndDoc,
and DeleteDC), the driver provides a few other methods: getting the printer’s status (for printers
which provide this data) and resetting the printer (either using a software command or using
hardware via RTS). Also, it is always good to “cleanup” after a DC command failed. For example,
if both CreateDC and StartDoc were successful, but StartPage failed, one should call EndDoc and
DeleteDC, to clean up the previously successful commands.

1.

Get a Device Context
The device context is obtained through the CreateDC function.

printDC.CreateDC(s_szDriverFilename, s_szDriverFilename, s_szPrinterPort, &dm)

Set an AbortProc Callback
A callback abort function should be set even if the developer does not intend for the user to
terminate the print job.

SetAbortProc(printDC, AbortProc)

(optional) Display a Cancel Dialog
The developer may display a dialog allowing the user to cancel the print job. Creating and
using the cancel dialog is not covered in this document.

. Call StartDoc

The application starts a print job using StartDoc.
printDC.StartDoc(&di)

Call StartPage for multiple page documents
StartPage is called to signal the start of a page.

printDC.StartPage ()

. Perform the Printing

The application is ready to print and should perform the tasks desired. Now is the time to
“paint” on the device context. One could also use the driver to check the printer’s status
before attempting to print anything. Functions such as DrawText and Rectangle are some
of those to be used to “paint” on the context.

. call EndPage for end of page of multiple page documents

EndPage should be called to signal the end of a page in multiple page documents.

printDC.EndPage ()

During the processing of the print job, the printer could have sent its “out of paper” status
code. Upon a call to EndPage, the driver would indicate if an error has occurred (such as
running out of paper before the completion of the print job). The function GetLastError
should then be called to obtain the error code which would contain the reason why the
previous call failed.

. end the print job with EndDoc

EndDoc signifies the end of the print job. As with the call to EndPage, in the event that
the function returned a value indicated that there was an error, GetLastError could be used
to obtain that error.

. (optional) remove the cancel dialog

If a cancel dialog was presented now would be the time to remove it. Considering the printing
has completed (successfully or unsuccessfully), there is no longer anything to cancel.

10. clean up by removing the device context

3.2. Registry Entries

3.2.1. Required Registry Settings

The printer driver, CE_ TinyDriver.dll, has been implemented as a stream interface driver and
is meant to be opened by the Device Manager (device.exe). As such, a few registry settings are
required in order for the driver to function.

Table 3.1.: Required Settings in HKLM\Drivers\BuiltIn\GEP

Setting Type Value

DLL REG_SZ “\FFSDISK\GeBE\CE5 _TinyDriver.dll”
Prefix REG_SZ “GEP”

FriendlyName REG_SZ “GEP”

Flags REG_DWORD 0

Index REG_DWORD 1

Order REG_DWORD 8

The setting “DLL” points to the DLL file containing the printer driver. The full path is used when
the file is located outside of the PATH (ie outside of \Windows). The rest of the settings correspond
to using stream interface drivers with the Device Manager. Other than “DLL” containing the full
path to the file containing the library, these few settings should not be changed.

3.2.2. Settings used to configure the Driver

Parity, StopBits, and XonXoff The settings “Parity”, “StopBits”, and “XonXoff” modify the con-

10

nection settings. The possible “Parity” values and their meanings are as follows: No Parity
(0), Odd Parity (1), Even Parity (2), Mark Parity (3), and Space Parity (4). The default is
no parity (0).

The possible “StopBits” values and their meanings are as follows: 1 stop bit (0), 1.5 stop
bits (1), and 2 stop bits (2). The default is two stop bits (2). Note that Windows CE does
not support a setting of zero stop bits.

There are two possible values for the “XonXoff” setting. A value of 1 means that the feature
is enabled (ie that XON/XOFF should be used) while a value of 0 means that XON/OFF
should not be used. The default is to use XON/XOFF software handshaking (1).

Table 3.2.: Configurable Settings in HKLM\Drivers\BuiltIn\GEP

Setting Type Value Possible Values
Parity REG_DWORD 0 0,1,2,3,4
StopBits REG_DWORD 2 0,1,2
XonXoff REG_DWORD 1 0,1
PrintTimeout REG_DWORD 800

ResetTime REG_DWORD 1100

ResetWaitTime REG_DWORD 200
NumWakeUpBytes REG_DWORD 0
NumFlushRetries REG_DWORD 11
FlushRetryWait REG_DWORD 1
PortBufferSize REG_DWORD 7 1-2048

PrintTimeout The setting “PrintTimeout” defaults at 800 ms. Any reasonable value could be
assigned to this setting. The setting is in terms of milliseconds. A larger number, for
example 1600 ms (1.6 seconds), corresponds to a longer wait (in this case twice as long as
the default) before timing out while waiting for a print job to complete. A smaller number,
for example 400 ms (4/10 of 1 second), corresponds to a shorter wait (in this case half as
long as the default). Although 800 ms should be fine in most circumstances, integrators may
need to tweak the setting to their specific application, requirements, and conditions.

ResetTime The setting “ResetTime” is the time in ms used to reset the printer using the RTS
line. The default value of 1100 refers to putting the RTS to low for 1100 ms, to induce a
reset, then high again.

ResetWaitTime The setting “ResetWaitTime” is the time in ms to wait after the reset before
moving to the next task. This value should be large enough to allow time for the printer
to initialize itself. The default of 200 means that the driver will wait 200 ms after a reset
before continuing the driver’s normal operations.

NumWakeUpBytes The “wakeup” feature can be configured through the “‘NumWakeUpBytes”
setting. The feature can be explicitly disabled by setting the value to 0. If the entry is
missing, the driver defaults to disabling the “wakeup” feature. Specifying any possible value
both enables the “wakeup” feature and defines the number of “wakeup” bytes to send to the
printer. The “wakeup” bytes are sent one at a time, one after another, to the printer for each
and every creation of the device context.

The number of “wakeup” bytes required will vary from configuration to configuration and
depend on things such as the baudrate in use. A setting of 100 “NumWakeUpBytes” may be
a good starting point for testing the number required for a particular setup.

NumFlushRetries The setting “NumFlushRetries”, with a default value of 11, is the number of
times the driver should attempt to write its internal buffer to the physical port, in cases
where the printer did not return and error message and neither did WinCE.

FlushRetryWait The setting “FlushRetryWait”, with a default value of 1, corresponds to the
number of milliseconds to wait before continuing with the next retry. With a higher positive
value, the WinCE system is able to work on other tasks before returning to the Flush Retry
Loop.

PortBufferSize The setting “PortBufferSize”, with a default value of 7, sets the number of bytes
the driver should send to the port. This setting has an effect on print speed because it
affects how fast the printer receives data. The default of 7 is purposely lower than should
be needed. A more reasonable value is something closer to 64.

11

3.2.3. Other, Related Keys

For developers to use the driver, the keys mentioned in section 3.2.1 were required while the ones
mentioned in section 3.2.2 allowed modifying the driver’s settings. The keys in HKLM\Printers
and HKLM\Ports are not needed for a developer to use the CE_ TinyDriver printer driver. Instead,
the keys in HKLM\Printers and HKLM\Ports define a standard printer and port, which programs
like WordPad use to list available printers and ports.

HKLM\Printers

Table 3.3.: Related Registry Settings in HKLM\Printers\GeBE PrinterName

Setting Type Value

Driver REG_SZ “\FFSDISK\GeBE_DriverFiles\CE5_TinyDriver.dll”
High Quality REG_SZ “200”

Color REG_SZ “Monochome”

Draft Quality REG_SZ “50”

The SubKey “GeBE PrinterName” (under HKLM\Printers) refers to the name given to the
printer. Typically GeBE’s product names, for example “GeBE Flash”, are used but customers
could customize the SubKey to a name of their choosing. The “Driver” setting contains a string
that points to the location of the DLL file containing the printer driver. The full path should be
used when driver sits outside of the PATH (ie somewhere other than in \Windows). The default
value set by the installer is of just the file name without any path data. See section 2.2.2 regarding
this issue.

The setting “High Quality” is required and denotes the resolution in high-quality mode. The
value of 200 is used as the default value.

The setting “Color” indicates whether the device can print in color or not. The setting needs to
be set to “Color” for color to be enabled in the Print DialogBox. The default value is “Monochrome”.

The setting “Draft Quality” need not be present but when present it indicates the resolution in
draft-quality mode. Not all printers support a draft-quality mode. The default is a value of 50.

HKLM\Ports

Table 3.4.: Global Printer Registry Settings in HKLM\ Ports

Setting type value

Portd REG_SZ “COM1: 115200”
Port6 REG_SZ “COM1: 9600”
Port7 REG_SZ “COM3: 38400”
Port8 REG_SZ “COM3: 96007
Port9 REG_SZ “LPT1”

The “Ports” SubKey contains a list of settings and their values where the values indicate the
ports. The names of the settings are the word “Port” followed by a number. It is important that
the needed port is in the list. In table 3.4, the value “COM1: 115200” is assigned to setting ‘“Port5”.
The value could have just as easily been assigned to a setting “Port9” or any other similarly named
value (such as “Port45”). The value “COM1: 115200” refers to a serial connection on COM1 at
115200 baud.

12

3.3. The Driver’s Application Programming Interface (API)

Using the driver’s application programming interface, the printer’s status can be obtained and the
printer can be reset. These two requests can be made either using the RTS line' or by sending

normal commands to the printer.

IPlease see the A8 Printer manual. For the printer to accept status requests and reset requests over the RTS line,
the option needs to be enabled on the printer.

13

3.3.1. Request Printer Reset

As mentioned, the printer can be reset using the API, using either RTS or not. Fulfilling reset
and status requests via the RTS line needs to be activated in the printer’s firmware before it can
be used. Also, in the case when the printer’s input buffer is full, sending another command, that
of requesting a printer reset, will go unfulfilled since the input buffer is already full. Requesting
a reset over the RTS line provides a means to reset the printer even when the printer’s buffer is

full. 2

Table 3.5.: TinyDriver API: ResetPrinter

BOOL ResetPrinter(PWSTR, sPort, BOOL bRTSReset, int iTimeout)
Request a reset of the printer

PWSTR sPort Port Name and Baudrate (i.e. “COM3: 115200”)
BOOL bRTSReset | TRUE to use RTS; FALSE to use a command
int iTimeout Milliseconds to wait before a timeout

Return values:
TRUE completed successfully
FALSE terminated with an error

?Resetting the printer not using an RTS reset should work correctly for both GeBE’s NEC and GeBE’s Atmel
based printers. Using an RT'S reset is known to work on GeBE’s Atmel based printers and may also be supported
with future versions of the NEC based printers and future releases of the printer driver.

14

3.3.2. Request Printer Status

The printer’s status can be obtained from the printer through the driver either by using the RTS

line or by sending a command to the printer.

incoming commands are lost. *

Table 3.6.: TinyDriver API: UpdatePrinterStatus

BOOL UpdatePrinterStatus(PWSTR, sPort, BOOL bWithRTS, int iTimeout)

Request the printer to send its current status

PWSTR sPort
BOOL bWithRTS
int iTimeout

Port Name and Baudrate (i.e. “COM3: 115200”)
TRUE to use RTS; FALSE to use a command
Milliseconds to wait before a timeout

Return values:

TRUE
FALSE

completed successfully
terminated with an error

3This API function should work correctly for both GeBE’s NEC and GeBE’s Atmel based printers.

Again, when the printer’s input buffer is full,

15

3.3.3. Obtain Latest Status Messages

The last few status messages from the printer can be obtained through the driver’s internal buffer.
Once the driver’s internal status message buffer is full, older status messages are lost as newer
messages arrive. Also, the messages are cleared from the driver’s cache upon being obtained
through the function GetPrinterStatus.

The function can be called in such a way as to fill the buffer with status bytes but it can also
be called in such a way as to provide the amount of space needed for the available data. The size
of the available data is returned by the function GetPrinterStatus when the buffer is NULL. In
this case, no bytes should be requested (the third parameter should be 0). In this particular case
the function should just return the size of the data available.

Table 3.7.: TinyDriver API: GetPrinterStatus

int GetPrinterStatus(PWSTR sPort, sPrinterStatus* pBuffer, int iLength)
Obtains the latest status messages from the driver’s internal buffer
PWSTR sPort | Port Name and Baudrate (i.e. “COM3: 1152007)
BYTE* pBuffer | Pointer to a buffer, into which the status bytes will be written
int iLength Maximum length of the buffer, in bytes

Return values:
-1 terminated with an error
not -1 number of bytes written

Table 3.8.: TinyDriver API: sPrinterStatus struct

struct sPrinterStatus
{

Byte bySec

Byte byMin

Byte byHour

Byte byDay

Byte byMonth

Word wYear

Byte byStatus

}

16

3.3.4. Stopping the Driver from monitoring the Port

Starting with Version 2 of the driver, the driver can free the port. In order to receive incoming
data, the driver would attach itself to the port then record the data as it arrived. Sometimes
though, it is desirable to interface with the port directly after having loading the port. Version 2
of the driver can be forced to leave the port with the following API function but it does so on its
own after a timeout period.

Table 3.9.: TinyDriver API: StopPortMonitor

BOOL StopPortMonitor(PWSTR sPort)
Request a reset of the printer
PWSTR sPort | Port Name and Baudrate (i.e. “COM3: 115200”)

Return values:
TRUE completed successfully
FALSE terminated with an error

17

3.4. External Syncronization

Upon a call to EndDoc, the driver searches for the ETX in its internal buffer. If not found, it looks
again 100 ms later. It will do this until either the ETX (3) has been found or the ETX has not
been found within the timeout "PrintTimeout" time (defaults to 800ms). Although there are two
documents (files) to print, the test program apparently splits the text into several “documents”
(as noted by StartDoc and EndDoc).

As is, the price to pay to know that an item sent to the printer printed is the current waiting
for the 3 time come back from the printer. In our tests here, with the printer at 4.6V, the 3
would be received around 250 ms after being sent to the printer. One way to better use the driver
as is, would be to split the document into StartPage and EndPage calls. This should mean just
one StartDoc call and one EndDoc call for the entire document, but has the disadvantage that
StartPage/EndPage do not provide a means to the STX and ETX. Another suggestion would be
to split the item to be printed into bigger chunks, calling StartDoc and EndDoc less often.

3.5. Waking up Printers in Sleep Mode

The driver can be used to “wake up” printers from low power, sleep mode. The feature is config-
urable through the registry entry NumWakeUpBytes, as explained in the table 3.2.2.

18

3.6. GeBE Driver Demo Program

A program has been created by GeBE to demonstrate some fundamentals with using printer
drivers. The driver demo program may be extended but is meant more just as reference of how
to interact and use the driver.

3.6.1. Source Code

The project was built with Microsoft Embedded Visual C++ 4 SP4. One should also be able to
import the source files, if not the project itself, into MS Visual Studio 2005.

3.6.2. Interface

The driver demo program has a rather simplistic interface. Nonetheless, the program allows one
to verify the connection settings and that the driver has been installed properly. The interface is
broken into two parts, a main window and the options window for setting driver and/or connection
settings.

Main Window

Across the top of the main window are several buttons. In the middle is a ListBox which gets filled
with status events both from the printer and as a consequence of interacting with the program
(clicking one of the buttons, for example).

[fle et vew Go] | 2] x|
BREEEEE

GeBE Printer Driver Test

Optionsl

l
l
f

T Clear | ris@|swa| |-
at
E Dt

(COMS: 115200 - x2BE_TinyDriverdil

K |
47| 7= GeBE Pri... |,.t,,_.;¢> 15:21 ‘ﬁ "%

Figure 3.1.: GeBE’s Driver Demo Program: Main Window

As mentioned in table 3.10, clicking the “Clear” button has the effect of replacing the contents
of the ListBox with the word “Clear”. Clicking the “Clear” button when only the word “Clear”
appears in the ListBox will empty the ListBox of its content. Double-clicking an item in the
ListBox requests that the contents of the ListBox (all of the status messages) be saved to a file
stored at the root of the Windows CE device (ie to the directory \status debug list.txt).

Print Options Window

19

Table 3.10.: Buttons of the Main Window

Title Description
Print sends a small test print to the printer
Dark sends a rectangles which have been filled in (in

order to overheat the printer)

Options brings up the options window where one can set
the driver and connection settings

Clear clears the status ListBox (replacing it with the
word "Clear”

RTS ? using the hardware RTS line, asks the printer for
its current status

RTS @ using the hardware RTS line, instructs the printer

to restart

SW ? using a software command, asks the printer for its
status

SW @ using a software command, instructs the printer
to restart

(bl gat_vew Go] | [7][x]
[el+] @] x|

Il

=u|
[Print Options *
T -

Select Driver 5

1 -

Port: Baudrate: |

[ICOMI :I |1152EIEI :l E
Stophits: Handshake:
|2 :I I)‘{ONJ‘)‘{OFF :l

|]

| =X GeBE Pri... |,*,._.;pr 15:23 ‘ﬁ ‘%

Figure 3.2.: GeBE’s Driver Demo Program: Options Window

Table 3.11.: Interface of the Options Window

Title Description

Select Driver sends a small test print to the printer

Port sends a rectangles which have been filled in (in
order to overheat the printer)

Stopbits brings up the options window where one can set
the driver and connection settings

Baudrate selects the baudrate

Handshake selects the type of handshake

Cancel closes the Options window without saving changes

OK closes the window while saving the settings

4. Miscellaneous

4.1. Frequently Asked Questions, with Answers

4.1.1. What is the window that is shown with the first print using the
driver?

A small console window (image 4.1 on page 21) was used by earlier versions of the TinyDriver.
Closing the window would harm neither the performance nor the functionality of the driver.
Versions of the driver released after the beginning of March 2008 no longer opened the console
window. Utilizing a more recent version of the driver would rid one of the previous driver’s console
window.

4.1.2. Sometimes my printouts begin with characters not in the document
to be printed. How does one get rid of this garbage?

Image 4.2 (on page 22) illustrates an example of this issue. In this case, the text ‘t5’ appears
before the desired output. Effects such as this most often occur when the data was sent to the
printer while the printer was still in sleep mode. The beginning few pieces of data to the printer
are lost as the printer switches back out of sleep mode.

Versions of the driver built after the beginning of April 2008 contain a feature to send data
to a printer in sleep mode to “wake” it before sending the data to be printed. Initially 0x00 was
sent 137 times to bring the printer out of sleep mode. Builds of the TinyDriver after May 2008
allow users to configure the “wakeup” feature and default to disabling the feature. Via a setting
in the registry, the “wakeup” bytes can be explicitly disabled or explicitly enabled and the quality
of bytes to be sent specified. Refer to table 3.2 on page 11 for more information regarding the
“wakeup” feature and registry setting.

Rather than using a more recent version of the driver, a workaround is to implement the sending
of bytes used for “waking” the printer in the program itself. One need only send a small document
of nothing more than a few bytes of zeros to the printer (directly or through the driver) before
sending the normal job to be printed.

File Edit Help e
Prientation? .A
[PORTRAIT
he=384 =450

Drientation?
PORTRAIT
k=384 y=453

-

K

I
&7 =AFopf A

Figure 4.1.: Driver’s Console Window

21

Figure 4.2.: Garbage before the Printout

4.1.3. How can a document be printed that is wider than it is long,
without the printout being rotated into landscape mode?

The solution is simple: use a more recent version of the driver. The effect of the driver ignoring the
program’s orientation (landscape/portrait) settings, always rotating the document automatically
when the width is larger than the height is a known issue with the older drivers and one that has
been eliminated with newer versions.

22

List of Figures

2.1.

3.1.
3.2.

4.1.
4.2.

Al

the driver’s entry in Remove Programs oo 0oL 8
GeBE’s Driver Demo Program: Main Window 19
GeBE’s Driver Demo Program: Options Window 20
Driver’s Console Window L e 21
Garbage before the Printout oL 22
Code Snippet, Using GetPrinterStatus 27

23

List of Tables

1.1. Naming Schemes e 5
3.1. Required Settings in HKLM\Drivers\BuiltIn\GEP 10
3.2. Configurable Settings in HKLM\Drivers\BuiltIn\GEP 11
3.3. Related Registry Settings in HKLM\ Printers\GeBE PrinterName 12
3.4. Global Printer Registry Settings in HKLM\Ports 12
3.5. TinyDriver API: ResetPrinter 14
3.6. TinyDriver API: UpdatePrinterStatus 15
3.7. TinyDriver API: GetPrinterStatus 16
3.8. TinyDriver API: sPrinterStatus struct 16
3.9. TinyDriver API: StopPortMonitor 17
3.10. Buttons of the Main Window e 20
3.11. Interface of the Options Window 20

25

A. Code - GetPrinterStatus

/* request the size of available status data */
int ret = pGetPrinterStatus((PWSTR)s_szPrinterPort, NULL, 0);

/* add data to list */
tmpCString.Format (L"pGetPrinterStatus NULL O returned: %X",ret);
this->AddToList (tmpCString) ;

if (ret == -1)
{

/* an error with the request has occurred */
}

else if(ret >= 0)

{ /% request for the size of available data was successful */
if(ret > 0)
{ /* more than O pieces of data are available */

/% store the number of status units available in the variable count */
int count = ret/sizeof (sPrinterStatus);

/* add data to list */

tmpCString.Format (L"# SPrinterStatus: %X", count);

this->AddToList (tmpCString) ;

/% create a variable pStatus large enough to hold all of the available data */
sPrinterStatus* pStatus = new sPrinterStatus[ret];
memset (pStatus, 0, ret);

/% request the status data, to fill the pStatus buffer with no more than "ret" amount of data %/
ret = pGetPrinterStatus((PWSTR)s_szPrinterPort, pStatus, ret);

/* add data to list */
tmpCString.Format (L"pGetPrinterStatus pStatus, ret: %X", ret);
this->AddToList (tmpCString) ;

for(int i=0;i<count;i++)

{

tmpCString.Format (L"%02d.%02d.%04d %02d:%02d:%02d
this->AddToList (tmpCString) ;

}

delete pStatus;
¥
H

FreeLibrary(hD11) ;

Figure A.1.: Code Snippet, Using GetPrinterStatus

27

	Introduction
	Naming Scheme
	Required Registry Keys
	Printer Driver and Port Monitor

	Installation
	Manual Installation (.dll)
	Installation through an Automated Installer (.cab)
	Application Manager
	Known Issues

	Upgrading
	Removing

	The Driver
	Basic Overview
	Registry Entries
	Required Registry Settings
	Settings used to configure the Driver
	Other, Related Keys

	The Driver's Application Programming Interface (API)
	Request Printer Reset
	Request Printer Status
	Obtain Latest Status Messages
	Stopping the Driver from monitoring the Port

	External Syncronization
	Waking up Printers in Sleep Mode
	GeBE Driver Demo Program
	Source Code
	Interface

	Miscellaneous
	Frequently Asked Questions, with Answers
	What is the window that is shown with the first print using the driver?
	Sometimes my printouts begin with characters not in the document to be printed. How does one get rid of this garbage?
	How can a document be printed that is wider than it is long, without the printout being rotated into landscape mode?

	List of Figures
	List of Tables
	Code - GetPrinterStatus

